

Agentic Architectures for Informal Economies

Leveraging Google A2UI and Multi-Agent Frameworks for User-Centric Design

Executive Summary

The integration of emerging technologies into high-density, informal environments like **Madina Market** in Accra, Ghana, requires a paradigm shift from traditional software development to agentic, user-centric systems. By leveraging **Google's Agent-to-User Interface (A2UI)** and a specialized multi-agent framework, developers can overcome significant barriers, including digital illiteracy, intermittent connectivity, and high-noise environments. This paper outlines a strategic approach to bridging the digital divide through native, secure, and context-aware interfaces.

Socio-Technical Constraints in Informal Markets

Madina Market serves as a quintessential case study for "extreme simplicity" in design. Implementing User-Centric Design (UCD) here necessitates addressing several key variables:

- **Infrastructure:** Reliance on lower-end mobile devices and intermittent data.
- **Literacy:** High prevalence of non-literate or low-literacy users requiring voice-first support in local languages like **Twi and Ga**.
- **Environment:** Physical challenges such as bright sunlight and crowding demand high-contrast visual hierarchies and large fonts.
- **Trust:** A heavy reliance on interpersonal relationships and social validation.

Technological Foundation: Google A2UI

A2UI is a declarative protocol that allows AI agents to communicate with users across trust boundaries by transmitting UI specifications as blueprints of native components

rather than executable code.

Key Advantages for Informal Economies:

- **Native Performance:** Applications remain lightweight and performant on limited hardware.
- **Data Efficiency:** A2UI utilizes "progressive rendering," streaming only specific updates (e.g., surfaceUpdate) rather than refreshing entire screens.
- **Security:** Prevents "hallucinated UIs" by only rendering widgets previously authorized by the client.

Implementing Best Practices via the Five-Persona Agentic Framework

To implement these UCD strategies, the development lifecycle is orchestrated by five distinct agent types.

1. Pulse Agents: Hardcoded Reliability

Pulse agents operate on condition-action rules. In Madina, they handle immediate, high-stakes feedback loops.

- **Implementation:** Triggering an instant auditory and visual confirmation (vibration and green checkmark) the moment a **Mobile Money (MoMo)** transaction is verified.

2. Pulse+ Agents: Context-Aware Adaptation

Pulse+ agents update an internal model based on perceptions and previous actions.

- **Implementation:** Adapting the interface based on the user's current environment. For example, if a sensor detects high ambient light, the agent automatically shifts to a high-contrast visual theme to maintain readability.

3. Pathway Agents: Goal-Oriented Task Simplification

Pathway agents evaluate action sequences to reach a desired goal state.

- **Implementation:** Managed by the **requirements-analyst**, these agents design flat hierarchies for common tasks. Instead of navigating complex menus, a trader is guided through a direct path to check their daily balance or record a sale with one-tap actions.

4. Horizon Agents: Utility-Based Resource Management

Horizon agents assign utility values to different paths, balancing speed, cost, and resource consumption.

- **Implementation:** In low-bandwidth areas, these agents prioritize "**offline-first**" functionality. They may choose to delay a non-critical UI update to save data costs for the trader, optimizing the interaction for the lowest possible payload.

5. Synergy Agents: Learning and Cultural Evolution

Synergy agents are learning agents that adjust strategies based on experience and critique.

- **Implementation:** Working with the **accessibility-specialist**, these agents analyze field feedback to refine voice-first interactions¹⁹. They ensure icons remain culturally relevant—using Ghanaian symbols for "payment" instead of generic western icons—and evolve the language models to better understand local Twi nuances.

Financial and Ethical Guardrails

Digital tools must integrate deeply with the local financial ecosystem while protecting cultural identity:

- **MoMo Integration:** Utilizing agents for **automated transaction analysis** and fraud detection helps small-scale traders manage liquidity.
- **Human-in-the-Loop (HITL):** For high-stakes disbursements, the **AG-UI protocol's "Interrupt"** feature ensures the final authority always rests with a

person.

- **Sovereignty:** Design strategies must guard against "**data colonization**," ensuring African user data and cultural intellectual property (ICIP) are protected and return value to the local community.

The 2026 Roadmap

As A2UI moves toward stabilization, several milestones will define the next phase of agentic commerce:

Timeline	Milestone	Impact on Informal Economy
Q2 2026	Native Android/iOS Renderers	Native speed for market mobile apps on Jetpack Compose and SwiftUI.
Q4 2026	Protocol v1.0 Stabilization	Enterprise-grade reliability for MoMo payments.
2027+	AR/VR & Advanced Gestures	Immersive, touchless "zero-interface" interactions for busy traders.

Technical Implementation Guide: Synergy Agent for Twi Voice Localization

Unlike simpler agents, the Synergy Agent utilizes a learning loop to refine Twi voice commands, ensuring they resonate with local linguistic nuances and cultural context.

1. The Synergy Agent Learning Loop

The Synergy Agent operates through a continuous feedback cycle designed to move beyond generic speech-to-text toward "natural commerce".

- **Learning Element:** Monitors interactions between traders and the **Gemini-TTS** or **Chirp 3** models to identify common misinterpretations of Twi dialects.
- **Critique and Feedback:** Analyzes field feedback from the **intake-coordinator** and **accessibility-specialist** to detect where the AI's accent or emotional expression feels "non-African" or stereotypical.
- **Performance Element:** Adjusts the natural-language prompts used to synthesize speech, ensuring the output maintains near-human quality and local relevance.
- **Problem Generator (Explorer):** Proactively tests new "zero-interface" gesture-voice combinations to see which are most stable in high-noise market environments.

2. Implementation Workflow: The "AI Sandwich" Method

The Synergy Agent is integrated into a three-tier workflow to ensure technical accuracy and cultural sovereignty.

Phase I: The Top Slice (Human Strategic Context)

Human designers define the constraints, such as the specific Twi vocabulary used for **Mobile Money (MoMo)** transactions (e.g., terms for "balance check" or "cash out").

Phase II: The Filling (Synergy Agent Action)

The Synergy Agent orchestrates the technical execution:

1. **Multimodal Integration:** Connects **Chirp 3** for low-latency streaming of Twi audio to the frontend via the **AG-UI protocol**.
2. **Contextual Adaptation:** If a trader frequently uses Ga phrases alongside Twi, the agent updates its internal model to support code-switching.
3. **Refinement:** It analyzes "silent" barriers—where a user cancels a

transaction—to determine if a voice prompt was confusing or lacked the "social validation" required for trust.

Phase III: The Bottom Slice (Human Polish & Ethics)

Human experts (Accessibility Specialists) review the agent's proposed linguistic updates to protect **Indigenous Cultural and Intellectual Property (ICIP)** and prevent data colonization.

3. Architecture for Localized Voice

Component	Synergy Agent Task	Technical Outcome
Speech-to-Text	Analyze Twi phonemes in high-noise environments.	Improved accuracy for "hands-free" inventory updates
A2UI Rendering	Generate "Waiting Pages" during voice processing.	Reduced anxiety for non-literate users during MoMo verification.
Trust Simulation	Run DoubleAgents simulations for new voice commands.	Predictable agent behavior before real-world deployment.

4. Guardrails: Cultural and Data Sovereignty

To prevent the erosion of local identity, the Synergy Agent must operate within strict ethical gates:

- **Privacy-Officer Oversight:** Ensures the agent does not extract community data to train global models without returning value to Madina.
- **Human-in-the-Loop (HITL):** Uses the **AG-UI "Interrupt"** feature to pause if the agent is unsure of a voice command involving a large fund disbursement.

Conclusion

The "agentic leap" offers an opportunity to amplify human intelligence while safeguarding trust. By utilizing the "**AI Sandwich**"—where humans provide the strategic context and final polish, while AI agents handle the technical filling—we can create digital tools that are truly native to the vibrant, fast-paced world of the informal economy.